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本日の内容

1. 単回帰モデル

2. 通常の最小二乗法（OLS）
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統計学と計量経済学での変数の表記の違
い

▶ 統計学では確率変数を大文字で，実現値を小文
字で表す．

⇕

▶ 計量経済学では確率変数と実現値を区別せず，
行列を大文字で，ベクトルとスカラーを小文字
で表す．
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単回帰モデル
大きさ nの 2変量データ
((y1, x1), (y2, x2), · · · , (yn, xn))を用いて，

yi = β0 + β1xi + ui,

E(ui | xi) = 0,
E(uiu j | xi) = 0 (i ̸= j),

V(ui | xi) = σ2,

i = 1, 2, · · · , n

を推定することを考える．
これを推定すれば，2つの変数間の関係（xi が増加
すると yi はどの程度変化する傾向があるか？）を
定量的に検証できる．
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E(ui | xi) = 0の仮定より，

E(yi | xi) = β0 + β1xi .

⇒これは xi が与えられたときの yi の条件付き期
待値．
▶ E(yi | xi)を求めることを，yi を xi に回帰する
（regress）という．
▶ E(yi | xi)を与える式を回帰モデル（regression

model）という．
▶ xi の 1次式で表される回帰モデルを線形回帰
モデル（linear regression model）という．

▶ 定数項以外の説明変数が 1つである回帰モデ
ルを単回帰モデル（simple regression model）
という．
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▶ 説明される側の変数を被説明変数（explained
variable）という．

▶ 従属変数（dependent variable）ともいう．

▶ 説明する側の変数を説明変数（explanatory
variable）という．

▶ 独立変数（independent variable）ともいう．

▶ 回帰モデルにおける係数を回帰係数
（regression coefficient）という．

▶ 個体や時点に依存せず，説明変数にも依存しな
い項を定数項（constant term）という．

▶ ui = yi − E(yi | xi)を誤差項（error term）と
いう．

▶ 撹乱項（disturbance term）ともいう．
6 / 22



yi = β0 + β1xi + ui において，
▶ yi：被説明変数

▶ e.g.,年収

▶ xi：説明変数
▶ e.g.,修学年数

▶ β0, β1：回帰係数
▶ 特に，β0は定数項．

▶ ui：誤差項

説明変数 xi は確率的（stochastic）とする．

⇓
β0と β1を求める（推定する）には？
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モデルを
yi = β̂0 + β̂1xi + ei

と書き換える．
▶ 誤差項の推定値を残差（residual）という．
▶ ei：残差

▶ 誤差項 ui とは別物．

そして，残差二乗和
n∑

i=1
e2

i =
n∑

i=1
(yi − β̂0 − β̂1xi)2

が最小になるような β̂0と β̂1を求める．

▶ 残差二乗和
n∑

i=1
e2

i が最小になるように回帰係

数を求める方法を通常の最小二乗法（Ordinary
Least Squares, OLS）という．
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▶ OLSによって推定される統計量を OLS推定量
（OLS estimator）といい，その実現値を OLS推
定値（OLS estimate）という．

この場合の OLS推定量は，

β̂0 = ȳ − β̂1 x̄,

β̂1 =
∑n

i=1 (xi − x̄) (yi − ȳ)∑n
i=1 (xi − x̄)2

.

▶ ȳ =
1
n

n∑
i=1

yi, x̄ =
1
n

n∑
i=1

xi .

（導出方法は付録参照）
11 / 22



OLS推定における仮定（単回帰の場合）
▶ 「説明変数を所与とした誤差項の条件付き期待
値」と，「誤差項の条件なし期待値」が等しく，
その値は 0．

▶ E(ui | xi) = E(ui) = 0.
⇒説明変数と誤差項は平均独立で，誤差項の
期待値は 0．

▶ 説明変数を所与として，誤差項の条件付き分散
は一定で，異なる個体の誤差項同士は無相関．

▶ V(ui | xi) = σ2.
▶ E(uiu j | xi) = 0 (i ̸= j).

▶ 説明変数を所与として，誤差項は正規分布に
従う．

▶ ui | xi ∼ N
(
0, σ2) .
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実証分析例：ミンサー方程式の推定

「修学年数が増えると，年収がどれだけ増えるの
か」を分析するためのモデル（ミンサー方程式）

incomei = β0 + β1yeduci + ui

▶ incomei :年収（万円）
▶ yeduci :修学年数（年）
▶ i :個人番号

を推定する．
å「年収」を「修学年数」に回帰する．
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▶ 対数変換していないものをレベル（level）と
いう．

▶ 被説明変数と説明変数がともにレベルである
モデルを「レベル＝レベル・モデル」というこ
とがある．

å前スライドのモデルは，被説明変数も説明変数
も対数変換していないため，「レベル＝レベル・モ
デル」である．
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レベル＝レベル・モデル推定結果
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出力結果の見方
▶ 係数: 回帰係数推定値

▶ 標準誤差: 回帰係数の標準誤差
▶ 第 8回授業で説明

▶ t値: 「回帰係数が 0」という帰無仮説の両側 t
検定における検定統計値（t値）

▶ 第 8回授業で説明

▶ p値: 両側 p値
▶ 第 8回授業で説明

▶ 回帰の標準誤差：誤差項の標準偏差の推定値

▶ R-squared: 決定係数
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誤差項の分散の推定

定数項のある単回帰モデルの場合，誤差項 ui の（条
件付き）分散

V(ui | xi) = σ2,

は，以下のように推定できる．
▶ 誤差項の分散の推定量：

s2 =
∑n

i=1 e2
i

n − 2
.

この s2は不偏性をもつ，すなわち E(s2) = σ2

となることが知られている．（証明は省略）
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誤差項の標準偏差の推定
定数項のある単回帰モデルの場合，誤差項 ui の（条
件付き）標準偏差 σは，以下のように推定できる．
▶ 標準偏差の推定値を標準誤差（standard error）
という．

▶ 誤差項の標準偏差の推定量：

s =

√∑n
i=1 e2

i

n − 2
.

この式の nと e1, e2, · · · , enに具体的な値を代入
すれば，誤差項の標準偏差の推定値（誤差項の
標準誤差）を計算できる．
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決定係数
決定係数（R-squared）は，

R2 =
∑n

i=1 (ŷi − ȳ)2∑n
i=1 (yi − ȳ)2

= 1 −
∑n

i=1 e2
i∑n

i=1 (yi − ȳ)2
.

▶ 定数項ありの単回帰の場合，ŷi = β̂0 + β̂1xi .

▶ 意味モデルの当てはまりの良さ（説明変数で，
被説明変数の動きのうち，どの程度の割合を説
明できているか）

▶ 0 ≤ R2 ≤ 1.
▶ R2 = 0 :全く説明できていない．
▶ R2 = 1 :完全に説明できている．

⇒ R2 = 0や R2 = 1になることは，実際の実証
分析ではまず起こり得ない．
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モデル推定結果
▶ 修学年数の係数

▶ 23.151（符号は正）
å修学年数が 1年長くなると，年収が平均して
23.151万円（231,510円）高くなる傾向がある．

▶ 定数項
▶ −56.8928（符号は負）

▶ 誤差項の標準誤差
▶ 171.1286

▶ 決定係数
▶ R2 = 0.060744.

å「年収」の動きの約 6.1%を「修学年数」の動き
で説明できている．

20 / 22



今日のキーワード

回帰する，回帰モデル，線形回帰モデル，単回帰モ
デル，被説明変数，説明変数，回帰係数，定数項，
誤差項，残差，通常の最小二乗法（OLS），OLS推
定量，OLS推定値，レベル，標準誤差，決定係数
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次回までの準備

▶ 今回の講義スライドを読み直す．

▶ 「提出課題 2」に取り組む．

▶ 教科書第 5章第 3節，第 5節を読む．
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付録：「（定数項を含む）単回帰モデル」
の OLS推定量の導出

残差二乗和最小化問題は，

min
(β̂0,β̂1)∈R2

n∑
i=1

(yi − β̂0 − β̂1xi)2.

1階条件は，
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∂
∑n

i=1(yi − β̂0 − β̂1xi)2

∂ β̂0
= 0

⇔
n∑

i=1
2(yi − β̂0 − β̂1xi) · (−1) = 0

⇔
n∑

i=1
(yi − β̂0 − β̂1xi) = 0, (1)

∂
∑n

i=1(yi − β̂0 − β̂1xi)2

∂ β̂1
= 0

⇔
n∑

i=1
2(yi − β̂0 − β̂1xi) · (−xi) = 0

⇔
n∑

i=1
xi(yi − β̂0 − β̂1xi) = 0. (2)

24 / 22



(1)より，

n∑
i=1

(yi − β̂0 − β̂1xi) = 0 ⇔
n∑

i=1
yi −

n∑
i=1
β̂0 −

n∑
i=1
β̂1xi = 0

⇔
n∑

i=1
yi − nβ̂0 − β̂1

n∑
i=1

xi = 0

⇔
n∑

i=1
yi − β̂1

n∑
i=1

xi = nβ̂0

⇔ β̂0 =
1
n

n∑
i=1

yi − β̂1 ·
1
n

n∑
i=1

xi .
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ȳ =
1
n

n∑
i=1

yi, x̄ =
1
n

n∑
i=1

xi

とすると，β̂0は，

β̂0 = ȳ − β̂1 x̄. (1’)
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(2)と (1)より，
n∑

i=1
xi(yi − β̂0 − β̂1xi) = 0

⇔
n∑

i=1
xi(yi − β̂0 − β̂1xi) − x̄

n∑
i=1

(yi − β̂0 − β̂1xi)︸                  ︷︷                  ︸
(1) より，0 となる

= 0

⇔
n∑

i=1
xi(yi − β̂0 − β̂1xi) −

n∑
i=1

x̄(yi − β̂0 − β̂1xi) = 0

⇔
n∑

i=1

{
xi(yi − β̂0 − β̂1xi) − x̄(yi − β̂0 − β̂1xi)

}
= 0

⇔
n∑

i=1
(xi − x̄)(yi − β̂0 − β̂1xi) = 0.
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(1’)を代入すると，

n∑
i=1

(xi − x̄)(yi − β̂0 − β̂1xi) = 0

⇔
n∑

i=1
(xi − x̄)

{
yi − (ȳ − β̂1 x̄) − β̂1xi

}
= 0

⇔
n∑

i=1
(xi − x̄)(yi − ȳ + β̂1 x̄ − β̂1xi) = 0

⇔
n∑

i=1
(xi − x̄)

{
yi − ȳ − β̂1(xi − x̄)

}
= 0
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⇔
n∑

i=1

{
(xi − x̄)(yi − ȳ) − (xi − x̄)β̂1(xi − x̄)

}
= 0

⇔
n∑

i=1
(xi − x̄)(yi − ȳ) −

n∑
i=1

(xi − x̄)β̂1(xi − x̄) = 0

⇔
n∑

i=1
(xi − x̄)(yi − ȳ) − β̂1

n∑
i=1

(xi − x̄)2 = 0

⇔
n∑

i=1
(xi − x̄)(yi − ȳ) = β̂1

n∑
i=1

(xi − x̄)2

⇔β̂1 =
∑n

i=1(xi − x̄)(yi − ȳ)∑n
i=1(xi − x̄)2 .
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